Code: ME1T3, EE1T3, EC1T3, AE1T3

I B. Tech - I Semester - Regular Examinations - January 2015

ENGINEERING PHYSICS (Common for AE, ME, EEE, ECE)

Duration: 3 hours

Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

- 1. a) What is the physical significance of wave function 'Ψ'?
 - b) State the postulates of de-Broglie hypothesis.
 - c) State and explain Bragg's law of X-ray diffraction.
 - d) What is the significance of Miller indices?
 - e) What are the successes of Classical free electron theory?
 - f) What is Fermi level and Fermi energy?
 - g) What is polarisation in a dielectric material?
 - h) What are donor and acceptor energy levels?
 - i) What is a hard magnetic material?
 - j) Write the characteristics of laser.
 - k) Explain single wall and multi wall in nano materials.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

- a) Write down the Schrodinger wave equation for a particle in a one-dimensional box. Solve the equation to obtain energy eigen values.
 - b) State and explain Heisenberg's uncertainity principle. 4 M
 - c) Calculate the de-Broglie wavelength of an electron whose kinetic energy is 10eV.
- 3. a) Describe the seven types of crystal systems with their numerical and diagrams.

 6 M
 - b) Explain the powder method of crystal structure analysis.

 6 M
 - c) Monochromatic X-rays of wavelength 1.5A° are incident on a crystal face having an interplanar spacing of 1.6 A°. Find the highest order for which Bragg's reflection maximum can be seen.

 4 M
- 4. a) Discuss the Kronig-Penny model for the motion of an electron in a periodic potential.

 8 M

- b) Explain the classification of metals, semiconductors and insulators based on band theory.

 4 M
- c) For a dielectric material ε_r =4.94 and n^2 =2.69, where 'n' is the refractive index. Calculate the ratio between electronic and ionic polarisabilty for this material.
- 5. a) Describe the drift and diffusion currents in a semi conductor and derive their expressions. Deduce Einstein's relation.
 - b) Show that the Fermi level is nearer to the conduction band in an n-type semiconductor.

 4 M
 - c) Calculate the position of Fermi level E_F and the conductivity at $300^0 K$ for germanium crystal containing 5×10^{22} arsenic atoms/mm³. Also calculate the conductivity if the mobility of the electron is $0.39 \text{m}^2 \text{v}^{-1} \text{s}^{-1}$. 4 M E_g =0.3 ev $m_h^* = 0.24 \text{ m}_o$ m_e^* =0.12 m_o
- 6. a) Describe the construction and working of Ruby laser with necessary energy level diagram.

 8 M
 - b) Explain the light wave propagation through an optical fiber and deduce the expressions for numerical aperture and acceptance angle in it.

 6 M

c) The acceptance angle for a certain fiber is 24°. The refractive index of the core is 1.46. Determine the refractive index of cladding.

2 M